# The Modern Data Stack Guide 2026

# Enterprise Data Solutions Complete Reference for Building Modern Data Platforms

Version: 2.0 Last Updated: January 2026 Type: Implementation Guide

**Website:** EnterpriseDataSolutions.co.nz **Email:** Contact@EnterpriseDataSolutions.co.nz

#### **Table of Contents**

- 1. Introduction
- 2. Modern Data Stack Overview
- 3. Data Stack Layers & Components
- 4. Data Ingestion Layer
- 5. Data Storage Layer
- 6. Data Transformation Layer
- 7. Data Orchestration Layer
- 8. Data Quality & Observability
- 9. Analytics & BI Layer
- 10. Machine Learning & Al Layer

- 11. Data Governance & Catalog
- 12. Reverse ETL & Data Activation
- 13. Tool Comparison Matrices
- 14. Reference Architectures
- 15. Implementation Roadmap
- 16. Cost Optimization Strategies
- 17. Security & Compliance
- 18. Team Structure & Skills
- 19. Vendor Selection Framework
- 20. Appendix

#### Introduction

#### What is the Modern Data Stack?

The Modern Data Stack (MDS) represents a fundamental shift in how organizations build and manage their data infrastructure. Unlike traditional data systems that relied on monolithic, on-premises solutions, the modern data stack embraces:

| Traditional Approach       | Modern Data Stack Approach   |
|----------------------------|------------------------------|
| Monolithic systems         | Best-of-breed components     |
| On-premises infrastructure | Cloud-native services        |
| Batch processing only      | Batch + real-time streaming  |
| IT-managed, rigid schemas  | Self-service, schema-on-read |
| High upfront costs         | Pay-as-you-go pricing        |
| Weeks to deploy            | Hours to deploy              |
| Limited scalability        | Infinite scalability         |
| Code-heavy ETL             | SQL-first transformations    |

### Why This Guide?

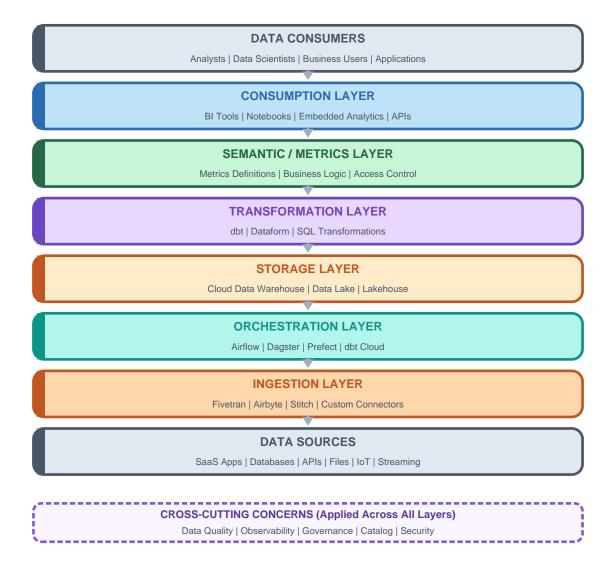
This guide is designed to help organizations:

- Navigate the complex landscape of modern data tools
- Evaluate options across all layers of the data stack
- Design architectures that match your specific needs
- Implement best practices from real-world deployments
- Optimize costs while maximizing value

#### Who Should Use This Guide?

| Role                 | How to Use This Guide                                         |
|----------------------|---------------------------------------------------------------|
| CDO/CIO              | Strategic overview, vendor selection, budgeting               |
| Data Engineers       | Technical deep-dives, architecture patterns, tool comparisons |
| Data Analysts        | BI layer options, self-service capabilities                   |
| Data Scientists      | ML platform options, feature stores, MLOps                    |
| Solutions Architects | Reference architectures, integration patterns                 |
| Finance/Procurement  | Cost analysis, TCO comparisons, licensing models              |

Version 2.0 | January 2026 Page 2 of 34


# **Modern Data Stack Maturity Model**

| Level | Name         | Characteristics                                            | Typical Tools             |
|-------|--------------|------------------------------------------------------------|---------------------------|
| 1     | Ad Hoc       | Manual processes,<br>spreadsheets, no central<br>warehouse | Excel, Google Sheets      |
| 2     | Foundational | Basic warehouse, simple ETL, standard BI                   | Basic DW, Talend, Tableau |
| 3     | Standardized | Cloud DW, dbt, orchestration, data catalog                 | Snowflake, dbt, Airflow   |
| 4     | Advanced     | Real-time, ML platform, governance, observability          | Full MDS stack            |
| 5     | Data-Driven  | Al-native, embedded analytics, data mesh                   | Cutting-edge tools        |

Version 2.0 | January 2026 Page 3 of 34

#### **Modern Data Stack Overview**

### **The Complete Modern Data Stack Architecture**



Version 2.0 | January 2026 Page 4 of 34

# **Key Principles of the Modern Data Stack**

| Principle          | Description                        | Benefit                       |
|--------------------|------------------------------------|-------------------------------|
| Cloud-Native       | Built for cloud from the ground up | Scalability, managed services |
| Best-of-Breed      | Choose best tool for each layer    | Optimal functionality         |
| SQL-First          | SQL as the primary language        | Accessible to more users      |
| Modular            | Loosely coupled components         | Flexibility, upgradability    |
| API-Driven         | Everything connects via APIs       | Easy integration              |
| Pay-as-You-Go      | Consumption-based pricing          | Cost efficiency               |
| Self-Service       | Empower all data users             | Faster time to insight        |
| Version Controlled | Data transformations in Git        | Collaboration, auditability   |

# **Data Stack Layers & Components**

### **Complete Layer Reference**

| Layer          | Purpose                 | Key Technologies                             | Evaluation Criteria      |
|----------------|-------------------------|----------------------------------------------|--------------------------|
| Sources        | Where data originates   | SaaS, databases, APIs, files, IoT            | Coverage, freshness      |
| Ingestion      | Move data to storage    | Fivetran, Airbyte, Stitch, Singer            | Connectors, reliability  |
| Storage        | Store and query data    | Snowflake, BigQuery,<br>Databricks, Redshift | Performance, cost        |
| Transformation | Model and transform     | dbt, Dataform, Coalesce                      | Productivity, testing    |
| Orchestration  | Coordinate workflows    | Airflow, Dagster, Prefect                    | Monitoring, scalability  |
| Quality        | Ensure data accuracy    | Great Expectations, Monte Carlo, Soda        | Coverage, alerting       |
| Catalog        | Discover and document   | Atlan, Alation, DataHub                      | Search, lineage          |
| BI/Analytics   | Visualize and explore   | Looker, Tableau, Power BI,<br>Metabase       | Usability, governance    |
| ML Platform    | Build and deploy models | Databricks ML, SageMaker,<br>Vertex AI       | End-to-end capabilities  |
| Reverse ETL    | Activate data in tools  | Census, Hightouch, Polytomic                 | Destinations, sync       |
| Metrics        | Define business metrics | Transform, Cube, Lightdash                   | Consistency, flexibility |

Version 2.0 | January 2026 Page 5 of 34

### **Build vs. Buy Decision Matrix**

| Factor        | Build Custom         | Buy SaaS       | Managed Open Source |
|---------------|----------------------|----------------|---------------------|
| Initial Cost  | Low (dev time)       | Medium-High    | Low-Medium          |
| Ongoing Cost  | High (maintenance)   | Predictable    | Medium              |
| Time to Value | Slow (months)        | Fast (days)    | Medium (weeks)      |
| Customization | Unlimited            | Limited        | High                |
| Reliability   | Variable             | High           | Medium-High         |
| Support       | Internal only        | Vendor SLA     | Community + vendor  |
| Scalability   | Engineering required | Automatic      | Manual scaling      |
| Best For      | Unique requirements  | Standard needs | Technical teams     |

#### **Data Ingestion Layer**

#### **Overview**

The ingestion layer is responsible for extracting data from source systems and loading it into your data warehouse or lake. This is often called "EL" (Extract-Load) in the modern stack, with transformation happening later.

### **Ingestion Approaches Comparison**

| Approach                  | Description                      | Best For                      | Challenges             |
|---------------------------|----------------------------------|-------------------------------|------------------------|
| Managed ELT               | SaaS platforms handle extraction | Most use cases                | Connector coverage     |
| Open Source               | Self-hosted connectors           | Cost-conscious, customization | Maintenance burden     |
| CDC (Change Data Capture) | Capture database changes         | Real-time needs               | Complexity             |
| <b>Custom Connectors</b>  | Build your own                   | Unique sources                | Development effort     |
| Streaming                 | Real-time event ingestion        | Low-latency requirements      | Operational complexity |

Version 2.0 | January 2026 Page 6 of 34

# **Tool Comparison: Data Ingestion Platforms**

| Feature                  | Fivetran               | Airbyte                   | Stitch            | Meltano        |
|--------------------------|------------------------|---------------------------|-------------------|----------------|
| Туре                     | Managed SaaS           | Open Source / Cloud       | Managed SaaS      | Open Source    |
| Connectors               | 300+                   | 350+                      | 140+              | 300+ (Singer)  |
| Pricing Model            | MAR-based              | Row-based / Seats         | Row-based         | Free / Support |
| Setup Time               | Minutes                | Hours                     | Minutes           | Hours          |
| Maintenance              | Zero                   | Self-managed              | Zero              | Self-managed   |
| <b>Custom Connectors</b> | Limited                | Easy (Python)             | Via Singer        | Easy (Singer)  |
| Data Normalization       | Automatic              | Configurable              | Automatic         | Configurable   |
| Incremental Sync         | Yes                    | Yes                       | Yes               | Yes            |
| CDC Support              | Yes                    | Yes                       | Limited           | Via connectors |
| SOC 2 Compliance         | Yes                    | Cloud only                | Yes               | Self-managed   |
| Best For                 | Enterprise, fast setup | Flexibility, cost control | SMB, simple needs | OSS preference |

# **Connector Coverage by Source Type**

| Source Category | Examples             | Fivetran | Airbyte | Stitch  |
|-----------------|----------------------|----------|---------|---------|
| CRM             | Salesforce, HubSpot  | Full     | Full    | Full    |
| Marketing       | Google Ads, Facebook | Full     | Full    | Partial |
| Finance         | NetSuite, QuickBooks | Full     | Partial | Partial |
| Product         | Amplitude, Mixpanel  | Full     | Full    | Partial |
| Databases       | PostgreSQL, MySQL    | Full     | Full    | Full    |
| Cloud Storage   | S3, GCS, Azure Blob  | Full     | Full    | Partial |
| SaaS Apps       | Zendesk, Jira        | Full     | Full    | Partial |
| Custom APIs     | REST, GraphQL        | Limited  | Full    | Limited |

# **Ingestion Best Practices**

| Best Practice    | Description                                    | Impact               |
|------------------|------------------------------------------------|----------------------|
| Start Simple     | Use managed ingestion first                    | Faster time to value |
| Sync Frequency   | Match business needs, not technical capability | Cost optimization    |
| Schema Handling  | Enable automatic schema changes                | Reduce maintenance   |
| Historical Loads | Plan for initial backfills                     | Data completeness    |
| Error Handling   | Configure alerting for failures                | Reliability          |
| Documentation    | Document source systems and owners             | Maintainability      |

Version 2.0 | January 2026 Page 7 of 34

### **Ingestion Architecture Decision Tree**

| Question                                | If Yes                                  | If No                          |
|-----------------------------------------|-----------------------------------------|--------------------------------|
| Do you have >100 data sources?          | Consider enterprise platform (Fivetran) | Evaluate all options           |
| Is budget a primary constraint?         | Consider Airbyte or Meltano             | Consider managed platforms     |
| Do you need real-time data?             | Add CDC or streaming layer              | Batch ingestion sufficient     |
| Do you have custom/proprietary sources? | Need custom connector capability        | Standard connectors sufficient |
| Is SOC 2 compliance required?           | Managed platform preferred              | More options available         |

### **Data Storage Layer**

#### **Overview**

The storage layer is the foundation of your modern data stack. This is where data lives and where compute happens for queries and transformations.

### **Storage Architecture Options**

| Architecture            | Description                      | Best For                   | Examples                      |
|-------------------------|----------------------------------|----------------------------|-------------------------------|
| Cloud Data<br>Warehouse | Structured storage, SQL queries  | Structured analytics       | Snowflake, BigQuery, Redshift |
| Data Lake               | Raw file storage, schema-on-read | Data science, unstructured | S3, ADLS, GCS                 |
| Data Lakehouse          | Lake + warehouse capabilities    | Unified platform           | Databricks, Delta Lake        |
| Real-time Store         | Low-latency queries              | Operational analytics      | Apache Druid, ClickHouse      |

Version 2.0 | January 2026 Page 8 of 34

### **Cloud Data Warehouse Comparison**

| Feature                       | Snowflake           | BigQuery           | Databricks    | Redshift       |
|-------------------------------|---------------------|--------------------|---------------|----------------|
| Architecture                  | Shared-disk         | Serverless         | Lakehouse     | Shared-nothing |
| Separation of Compute/Storage | Yes                 | Yes                | Yes           | Yes (RA3)      |
| Pricing Model                 | Credit-based        | On-demand/Slots    | DBU-based     | Node-based     |
| Auto-scaling                  | Yes                 | Yes                | Yes           | Limited        |
| Concurrency Scaling           | Yes                 | Yes                | Yes           | Add-on         |
| Semi-structured Data          | Excellent (VARIANT) | Good (JSON, ARRAY) | Excellent     | Good           |
| Streaming Support             | Snowpipe            | Native             | Delta Live    | Kinesis        |
| ML Integration                | Snowpark            | BigQuery ML        | MLflow native | SageMaker      |
| Data Sharing                  | Native              | Analytics Hub      | Delta Sharing | Data Exchange  |
| Governance                    | Excellent           | Good               | Unity Catalog | Lake Formation |
| Geographic<br>Availability    | Multi-cloud         | GCP only           | Multi-cloud   | AWS only       |
| Query Performance             | Excellent           | Excellent          | Excellent     | Good           |
| Ease of Use                   | Excellent           | Excellent          | Good          | Good           |

# **Cost Comparison (Estimated Monthly Cost for Medium Workload)**

| Scenario                    | Snowflake      | BigQuery       | Databricks      | Redshift       |
|-----------------------------|----------------|----------------|-----------------|----------------|
| 1TB Storage                 | \$23/month     | \$20/month     | \$25/month      | \$24/month     |
| 100 Queries/day (light)     | ~\$500/month   | ~\$400/month   | ~\$600/month    | ~\$800/month   |
| 1000 Queries/day<br>(heavy) | ~\$3,000/month | ~\$2,500/month | ~\$4,000/month  | ~\$2,000/month |
| 24/7 Workload               | ~\$8,000/month | ~\$6,000/month | ~\$10,000/month | ~\$5,000/month |

Note: Costs vary significantly based on usage patterns, query complexity, and negotiated pricing

# **Storage Best Practices**

| Best Practice               | Implementation                               | Benefit                   |
|-----------------------------|----------------------------------------------|---------------------------|
| Cluster Keys / Partitioning | Partition by date, cluster by common filters | Query performance         |
| Compression                 | Enable automatic compression                 | Storage cost reduction    |
| Lifecycle Policies          | Archive/delete old data                      | Cost optimization         |
| Compute Sizing              | Right-size warehouses for workload           | Cost efficiency           |
| Auto-suspend                | Configure idle timeout                       | Eliminate waste           |
| Separation of Workloads     | Dedicated compute for different teams        | Isolation, predictability |

Version 2.0 | January 2026 Page 9 of 34

#### **Platform Selection Decision Matrix**

| Requirement                | Best Choice            | Rationale                         |
|----------------------------|------------------------|-----------------------------------|
| GCP-native, serverless     | BigQuery               | Native integration, no management |
| Multi-cloud flexibility    | Snowflake              | Cloud-agnostic, data sharing      |
| Unified analytics + ML     | Databricks             | Lakehouse, MLflow native          |
| AWS-native, cost-sensitive | Redshift               | Deep AWS integration              |
| Real-time analytics        | ClickHouse / Druid     | Sub-second queries                |
| Open standards priority    | Databricks / Open Lake | Delta Lake, Iceberg               |

### **Data Transformation Layer**

#### **Overview**

The transformation layer is where raw data becomes analytics-ready. The modern approach uses SQL-first transformations with version control, testing, and documentation.

### **Transformation Approaches**

| Approach        | Description                     | Tools                  | Best For           |
|-----------------|---------------------------------|------------------------|--------------------|
| ELT (SQL-first) | Transform in warehouse with SQL | dbt, Dataform          | Most analytics     |
| ETL (Pre-load)  | Transform before loading        | Spark, traditional ETL | Complex processing |
| Streaming       | Transform in real-time          | Flink, Kafka Streams   | Real-time needs    |
| Python/Spark    | Code-based transformation       | PySpark, Pandas        | Data science       |

### dbt (Data Build Tool) Deep Dive

dbt has become the standard for SQL-first transformations. Here's a comprehensive comparison of deployment options:

| Feature       | dbt Core            | dbt Cloud        | Dataform           |
|---------------|---------------------|------------------|--------------------|
| Туре          | Open Source         | Managed SaaS     | Google-managed     |
| Cost          | Free                | \$100-500+/month | Free with BigQuery |
| IDE           | VS Code + Extension | Native Cloud IDE | Native IDE         |
| Scheduling    | External (Airflow)  | Built-in         | Built-in           |
| CI/CD         | Manual setup        | Built-in         | Built-in           |
| Documentation | Manual hosting      | Hosted           | Hosted             |

Version 2.0 | January 2026 Page 10 of 34

| Feature        | dbt Core                 | dbt Cloud                | Dataform            |
|----------------|--------------------------|--------------------------|---------------------|
| Semantic Layer | Community version        | Native                   | Limited             |
| Discovery      | Manual                   | dbt Explorer             | Limited             |
| Best For       | Technical teams, control | Productivity, governance | BigQuery-only shops |

# dbt Project Structure Best Practices

| Folder               | Purpose                            | Examples                              |
|----------------------|------------------------------------|---------------------------------------|
| /models/staging      | 1:1 source mapping, light cleaning | `stg_salesforceaccounts.sql`          |
| /models/intermediate | Business logic combinations        | `int_ordersenriched.sql`              |
| /models/marts        | Final analytical tables            | `fct_orders.sql`, `dim_customers.sql` |
| /models/metrics      | Metric definitions                 | `metric_revenue.yml`                  |
| /macros              | Reusable SQL snippets              | `generate_schema_name.sql`            |
| /tests               | Data quality tests                 | `test_unique_order_id.sql`            |
| /seeds               | Static reference data              | `country_codes.csv`                   |

### **Transformation Best Practices**

| Best Practice      | Description                                  | Impact                     |
|--------------------|----------------------------------------------|----------------------------|
| Version Control    | All transformations in Git                   | Collaboration, audit trail |
| Testing            | Test every model                             | Data quality               |
| Documentation      | Document columns and models                  | Discoverability            |
| Modular Design     | Small, reusable models                       | Maintainability            |
| Incremental Models | Process only new/changed data                | Performance, cost          |
| Naming Conventions | Consistent prefixes (stg_, int_, fct_, dim_) | Clarity                    |

# **Transformation Layer Decision Matrix**

| Scenario               | Recommended Approach           | Tools                      |
|------------------------|--------------------------------|----------------------------|
| Standard analytics     | SQL-first ELT                  | dbt + Cloud DW             |
| Complex ML features    | Python + SQL hybrid            | dbt + Spark                |
| Real-time dashboards   | Streaming + materialized views | Flink + DW                 |
| Large-scale processing | Distributed compute            | Spark / Databricks         |
| Simple transformations | Native DW features             | BigQuery Scheduled Queries |

Version 2.0 | January 2026 Page 11 of 34

### **Data Orchestration Layer**

#### **Overview**

Orchestration coordinates the execution of data pipelines, managing dependencies, scheduling, and monitoring across your data stack.

### **Orchestration Tool Comparison**

| Feature        | Airflow             | Dagster              | Prefect              | dbt Cloud    |
|----------------|---------------------|----------------------|----------------------|--------------|
| Туре           | Open Source         | Open Source          | Open Source + Cloud  | Managed SaaS |
| Architecture   | Task-based DAGs     | Asset-based          | Flow-based           | dbt-native   |
| Learning Curve | Steep               | Medium               | Easy                 | Easy         |
| UI/UX          | Functional          | Modern               | Modern               | Excellent    |
| Testing        | Limited             | First-class          | Good                 | Built-in     |
| Data Lineage   | Manual              | Automatic            | Manual               | Automatic    |
| Scalability    | Excellent           | Good                 | Excellent            | Good         |
| Kubernetes     | Native              | Native               | Native               | N/A          |
| Deployment     | Self-managed / MWAA | Self-managed / Cloud | Self-managed / Cloud | Managed      |
| Best For       | Complex workflows   | Data-aware ops       | Python teams         | dbt-centric  |

#### **Orchestration Patterns**

| Pattern          | Description                   | When to Use                 |  |
|------------------|-------------------------------|-----------------------------|--|
| Time-based       | Run at scheduled intervals    | Regular batch processing    |  |
| Event-driven     | Trigger on data arrival       | Streaming, file landing     |  |
| Dependency-based | Run when upstream completes   | Complex DAGs                |  |
| SLA-based        | Ensure completion by deadline | Business-critical pipelines |  |
| Hybrid           | Combination of above          | Real-world scenarios        |  |

Version 2.0 | January 2026 Page 12 of 34

### **Pipeline Scheduling Best Practices**

| Best Practice          | Implementation                   | Benefit           |
|------------------------|----------------------------------|-------------------|
| Idempotency            | Re-runnable without side effects | Recovery, testing |
| Incremental Processing | Process only changed data        | Efficiency        |
| Dependency Management  | Explicit dependencies            | Reliability       |
| Alerting               | Notify on failures               | Fast response     |
| Logging                | Comprehensive logging            | Debugging         |
| Backfill Support       | Easy historical reprocessing     | Data corrections  |

### **Managed vs. Self-Hosted Decision**

| Factor        | Managed (MWAA, Astronomer) | Self-Hosted              |
|---------------|----------------------------|--------------------------|
| Setup Time    | Hours                      | Days to weeks            |
| Maintenance   | Vendor-managed             | Team responsibility      |
| Cost          | Higher, predictable        | Lower, variable          |
| Customization | Limited                    | Unlimited                |
| Scaling       | Automatic                  | Manual                   |
| Best For      | Most organizations         | Large, specialized needs |

### **Data Quality & Observability**

#### **Overview**

Data quality and observability ensure that data is accurate, complete, and reliable. This is increasingly critical as organizations make more decisions based on data.

### **Data Quality Dimensions**

| Dimension    | Description                       | Example Checks              |
|--------------|-----------------------------------|-----------------------------|
| Accuracy     | Data correctly represents reality | Values within valid ranges  |
| Completeness | All required data present         | No unexpected nulls         |
| Consistency  | Data agrees across sources        | Totals match, no duplicates |
| Timeliness   | Data is current                   | Freshness within SLA        |
| Validity     | Data conforms to rules            | Format validation           |
| Uniqueness   | No unintended duplicates          | Primary key uniqueness      |

Version 2.0 | January 2026 Page 13 of 34

# **Data Quality Tool Comparison**

| Feature                  | Great Expectations | Monte Carlo        | Soda                | Elementary  |
|--------------------------|--------------------|--------------------|---------------------|-------------|
| Туре                     | Open Source        | Managed SaaS       | Open Source + Cloud | dbt package |
| Approach                 | Testing-first      | ML-powered anomaly | Testing + profiling | dbt-native  |
| Learning Curve           | Medium             | Easy               | Easy                | Easy        |
| Alerting                 | Custom             | Built-in           | Built-in            | Built-in    |
| Lineage                  | Limited            | Full               | Limited             | dbt lineage |
| <b>Anomaly Detection</b> | Manual rules       | Automatic ML       | Rule + ML hybrid    | Basic       |
| Integration              | Python/Spark       | Multi-platform     | Multi-platform      | dbt only    |
| Cost                     | Free               | \$\$\$\$           | Free to \$\$        | Free        |
| Best For                 | Technical teams    | Enterprise         | Balanced approach   | dbt users   |

# **Data Observability Framework**

| Pillar       | What to Monitor              | Tools/Methods           |
|--------------|------------------------------|-------------------------|
| Freshness    | When was data last updated?  | Timestamp monitoring    |
| Volume       | Is expected amount arriving? | Row count tracking      |
| Schema       | Has structure changed?       | Schema change detection |
| Distribution | Are values within norms?     | Statistical profiling   |
| Lineage      | Where did data come from?    | Dependency tracking     |

### **Data Quality Best Practices**

| Best Practice         | Implementation          | Benefit                  |
|-----------------------|-------------------------|--------------------------|
| Test Early            | Tests on staging models | Catch issues upstream    |
| Test Often            | Run with every pipeline | Continuous quality       |
| Alert Smart           | Avoid alert fatigue     | Actionable notifications |
| Document Expectations | Define SLAs per dataset | Clear ownership          |
| Automate              | Integrate with CI/CD    | Prevent bad deployments  |
| Monitor Trends        | Track quality over time | Proactive management     |

Version 2.0 | January 2026 Page 14 of 34

### **Quality Implementation Roadmap**

| Phase            | Focus                  | Actions                               |
|------------------|------------------------|---------------------------------------|
| 1. Foundation    | Critical tables        | Uniqueness, null checks on key tables |
| 2. Expansion     | All production tables  | Referential integrity, value ranges   |
| 3. Automation    | CI/CD integration      | Block bad changes, automated testing  |
| 4. Observability | Anomaly detection      | ML-powered monitoring, trend analysis |
| 5. Optimization  | Continuous improvement | Root cause analysis, prevention       |

### **Analytics & BI Layer**

#### **Overview**

The analytics layer is where data consumers interact with your data stack. This includes traditional BI tools, embedded analytics, and self-service capabilities.

### **BI Tool Comparison**

| Feature            | Looker                     | Tableau            | Power BI            | Metabase            |
|--------------------|----------------------------|--------------------|---------------------|---------------------|
| Туре               | Cloud-native               | Desktop + Cloud    | Microsoft ecosystem | Open Source         |
| Semantic Layer     | LookML (strong)            | Limited            | DAX                 | Limited             |
| Self-Service       | Good                       | Excellent          | Excellent           | Good                |
| Governance         | Excellent                  | Good               | Excellent           | Basic               |
| Embedded Analytics | Excellent                  | Good               | Good                | Good                |
| Real-time          | Good                       | Limited            | Good                | Limited             |
| Learning Curve     | Steep (LookML)             | Medium             | Medium              | Easy                |
| Cost               | \$\$\$\$\$                 | \$\$\$\$           | \$\$                | Free / \$           |
| Best For           | Enterprise, semantic layer | Visual exploration | Microsoft shops     | SMB, cost-conscious |

Version 2.0 | January 2026 Page 15 of 34

# **Additional BI Options**

| Tool        | Positioning                | Best For                        | Cost       |
|-------------|----------------------------|---------------------------------|------------|
| Preset      | Managed Apache Superset    | Technical teams, cost-conscious | \$\$       |
| Thoughtspot | Search-driven analytics    | Business users, Al-powered      | \$\$\$\$\$ |
| Sigma       | Spreadsheet-like interface | Excel users, collaboration      | \$\$\$     |
| Mode        | Notebook + BI hybrid       | Data teams, SQL users           | \$\$\$     |
| Hex         | Modern notebook + BI       | Data scientists, collaboration  | \$\$       |
| Lightdash   | dbt-native BI              | dbt teams                       | \$         |

# **Semantic Layer Comparison**

| Approach           | Description                | Tools              | Trade-offs                   |
|--------------------|----------------------------|--------------------|------------------------------|
| BI-native          | Metrics defined in BI tool | LookML, DAX        | Vendor lock-in               |
| Standalone         | Dedicated metrics layer    | Cube, Transform    | Additional tool              |
| dbt Semantic Layer | Metrics in dbt             | dbt Semantic Layer | Emerging, limited BI support |
| None               | Metrics in mart tables     | SQL views          | Flexibility vs. consistency  |

# **BI Implementation Best Practices**

| Best Practice                | Implementation                      | Benefit                   |
|------------------------------|-------------------------------------|---------------------------|
| Single Source of Truth       | Semantic layer or governed marts    | Consistency               |
| Self-Service with Guardrails | Governed access, certified datasets | Democratization + control |
| Performance Optimization     | Aggregates, caching, extracts       | User experience           |
| Mobile-First                 | Design for mobile consumption       | Accessibility             |
| Embedded Analytics           | Integrate into applications         | Reach more users          |
| Training Program             | Regular user education              | Adoption                  |

Version 2.0 | January 2026 Page 16 of 34

#### **BI Selection Decision Matrix**

| Requirement              | Best Choice         | Rationale                      |
|--------------------------|---------------------|--------------------------------|
| Strong governance needed | Looker or Power BI  | Semantic layer, access control |
| Visual exploration focus | Tableau             | Best-in-class visualization    |
| Microsoft ecosystem      | Power BI            | Native integration, cost       |
| Open source/budget       | Metabase or Preset  | Free/low cost, capable         |
| dbt-native workflow      | Lightdash or Preset | Direct dbt integration         |
| Embedded analytics       | Looker or Cube      | API-first, white-labeling      |

# **Machine Learning & Al Layer**

#### **Overview**

The ML layer enables organizations to build, deploy, and manage machine learning models as part of their data stack.

### **ML Platform Components**

| Component           | Purpose                        | Examples                                |  |
|---------------------|--------------------------------|-----------------------------------------|--|
| Feature Store       | Centralize feature engineering | Feast, Tecton, Databricks Feature Store |  |
| Experiment Tracking | Track model experiments        | MLflow, Weights & Biases, Neptune       |  |
| Model Registry      | Version and manage models      | MLflow, SageMaker, Vertex AI            |  |
| Model Serving       | Deploy models for inference    | SageMaker, Vertex AI, Seldon            |  |
| ML Orchestration    | Automate ML workflows          | Kubeflow, Airflow, Metaflow             |  |
| Monitoring          | Track model performance        | Evidently, Fiddler, Arize               |  |

Version 2.0 | January 2026 Page 17 of 34

# **ML Platform Comparison**

| Feature             | Databricks ML   | SageMaker   | Vertex AI        | Azure ML    |
|---------------------|-----------------|-------------|------------------|-------------|
| Cloud               | Multi-cloud     | AWS         | GCP              | Azure       |
| Notebook Experience | Excellent       | Good        | Good             | Good        |
| Feature Store       | Native          | Native      | Native           | Native      |
| AutoML              | AutoML          | Autopilot   | AutoML           | AutoML      |
| MLOps               | MLflow native   | MLOps tools | Vertex Pipelines | Azure MLOps |
| Cost                | \$\$\$          | \$\$\$      | \$\$\$           | \$\$\$      |
| Integration with DW | Excellent       | Good        | Excellent (BQ)   | Good        |
| Best For            | Lakehouse users | AWS shops   | GCP shops        | Azure shops |

# **MLOps Maturity Model**

| Level | Description          | Capabilities                                |
|-------|----------------------|---------------------------------------------|
| 0     | Manual               | Manual training, manual deployment          |
| 1     | ML Pipeline          | Automated training, manual deployment       |
| 2     | CI/CD for ML         | Automated training and deployment           |
| 3     | Automated Retraining | Trigger-based retraining, monitoring        |
| 4     | Full MLOps           | Feature store, A/B testing, full automation |

### **ML Implementation Best Practices**

| Best Practice      | Implementation                               | Benefit                 |
|--------------------|----------------------------------------------|-------------------------|
| Start with SQL ML  | BigQuery ML, Snowpark ML                     | Low barrier to entry    |
| Version Everything | Code, data, models, features                 | Reproducibility         |
| Monitor Models     | Track accuracy drift, data drift Reliability |                         |
| Feature Reuse      | Centralize feature engineering               | Consistency, efficiency |
| Governance         | Document models, track lineage               | Compliance, trust       |

Version 2.0 | January 2026 Page 18 of 34

#### **Data Governance & Catalog**

#### **Overview**

Data governance ensures that data is secure, compliant, and properly managed. Data catalogs enable data discovery and understanding.

### **Data Catalog Comparison**

| Feature     | Atlan        | Alation           | DataHub        | Collibra         |
|-------------|--------------|-------------------|----------------|------------------|
| Туре        | Modern SaaS  | Enterprise        | Open Source    | Enterprise       |
| UI/UX       | Excellent    | Good              | Good           | Good             |
| Search      | AI-powered   | Enterprise search | Basic          | Enterprise       |
| Lineage     | Automatic    | Automatic         | Manual/Auto    | Automatic        |
| Governance  | Good         | Excellent         | Basic          | Excellent        |
| Integration | Wide         | Wide              | Wide           | Wide             |
| Cost        | \$\$\$       | \$\$\$\$          | Free           | \$\$\$\$\$       |
| Best For    | Modern teams | Enterprise        | OSS preference | Large enterprise |

#### **Data Governance Framework**

| Domain           | Components                                          | Tools/Methods              |
|------------------|-----------------------------------------------------|----------------------------|
| Data Quality     | Standards, monitoring, remediation                  | Quality tools, SLAs        |
| Data Security    | Access control, encryption, masking                 | IAM, column-level security |
| Data Privacy     | PII detection, consent, retention                   | Privacy tools, policies    |
| Data Catalog     | Discovery, documentation, lineage Catalog platforms |                            |
| Data Stewardship | Ownership, accountability                           | Roles, processes           |
| Compliance       | Regulatory requirements                             | Audit trails, reporting    |

Version 2.0 | January 2026 Page 19 of 34

#### **Access Control Patterns**

| Pattern                | Description                      | Best For             |  |
|------------------------|----------------------------------|----------------------|--|
| Role-Based (RBAC)      | Access by role                   | Simple organizations |  |
| Attribute-Based (ABAC) | Access by data attributes        | Complex rules        |  |
| Row-Level Security     | Filter rows by user Multi-tenant |                      |  |
| Column-Level Security  | Mask sensitive columns           | PII protection       |  |
| Dynamic Masking        | Mask data at query time          | Flexible security    |  |

### **Governance Implementation Roadmap**

| Phase           | Focus                    | Deliverables                 |
|-----------------|--------------------------|------------------------------|
| 1. Discovery    | Understand current state | Data inventory, gap analysis |
| 2. Foundation   | Core governance          | Policies, ownership, catalog |
| 3. Security     | Protect sensitive data   | Access controls, encryption  |
| 4. Quality      | Ensure data accuracy     | Quality monitoring, SLAs     |
| 5. Optimization | Continuous improvement   | Automation, self-service     |

#### **Reverse ETL & Data Activation**

#### **Overview**

Reverse ETL synchronizes data from your warehouse back to operational systems, enabling data-driven automation and personalization.

#### **Reverse ETL Use Cases**

| Use Case                   | Source                    | Destination          | Value                 |
|----------------------------|---------------------------|----------------------|-----------------------|
| CRM Enrichment             | Customer 360 in warehouse | Salesforce           | Better sales insights |
| Marketing Audiences        | Segments in warehouse     | Facebook, Google Ads | Targeted campaigns    |
| Product<br>Personalization | User features             | Braze, Iterable      | Improved engagement   |
| Support Context            | Customer data             | Zendesk              | Better support        |
| Operational Alerts         | Anomaly detection         | Slack, PagerDuty     | Faster response       |

Version 2.0 | January 2026 Page 20 of 34

# **Reverse ETL Tool Comparison**

| Feature          | Census       | Hightouch    | Polytomic         | RudderStack         |
|------------------|--------------|--------------|-------------------|---------------------|
| Туре             | Managed SaaS | Managed SaaS | Managed SaaS      | Open Source + Cloud |
| Destinations     | 150+         | 150+         | 100+              | 200+                |
| Audience Builder | Yes          | Yes          | Basic             | Yes                 |
| dbt Integration  | Excellent    | Excellent    | Good              | Good                |
| Real-time        | Coming       | Coming       | Coming            | Yes                 |
| Pricing          | Record-based | Record-based | Destination-based | Event-based         |
| Best For         | Enterprise   | Enterprise   | Mid-market        | CDP use cases       |

#### **Reverse ETL Best Practices**

| Best Practice     | Implementation                | Benefit           |
|-------------------|-------------------------------|-------------------|
| Start Small       | 1-2 high-value syncs          | Prove value       |
| Sync Frequency    | Match business need           | Cost optimization |
| Incremental Syncs | Only sync changes Performance |                   |
| Error Handling    | Configure alerts, retries     | Reliability       |
| Documentation     | Document what syncs where     | Maintainability   |

# **Tool Comparison Matrices**

# **Complete Stack Comparison by Category**

#### **Ingestion Tools**

| Tool     | Best For                  | Pricing  | Learning Curve |
|----------|---------------------------|----------|----------------|
| Fivetran | Enterprise, quick setup   | \$\$\$\$ | Easy           |
| Airbyte  | Flexibility, cost control | \$       | Medium         |
| Stitch   | SMB, simple needs         | \$\$     | Easy           |
| Meltano  | OSS preference            | Free     | Medium         |

Version 2.0 | January 2026 Page 21 of 34

#### **Cloud Data Warehouses**

| Tool       | Best For                   | Pricing | Learning Curve |
|------------|----------------------------|---------|----------------|
| Snowflake  | Multi-cloud, data sharing  | \$\$\$  | Easy           |
| BigQuery   | GCP shops, serverless      | \$\$    | Easy           |
| Databricks | Analytics + ML unified     | \$\$\$  | Medium         |
| Redshift   | AWS-native, cost-sensitive | \$\$    | Medium         |

#### **Transformation Tools**

| Tool      | Best For                 | Pricing | Learning Curve |
|-----------|--------------------------|---------|----------------|
| dbt Core  | Technical teams, control | Free    | Medium         |
| dbt Cloud | Productivity, governance | \$\$    | Easy           |
| Dataform  | BigQuery-only            | Free    | Easy           |
| Coalesce  | Low-code transformation  | \$\$\$  | Easy           |

#### **Orchestration Tools**

| Tool      | Best For              | Pricing               | Learning Curve |
|-----------|-----------------------|-----------------------|----------------|
| Airflow   | Complex workflows     | Free / \$\$ (managed) | Steep          |
| Dagster   | Data-aware pipelines  | Free / \$\$           | Medium         |
| Prefect   | Python teams          | Free / \$\$           | Easy           |
| dbt Cloud | dbt-centric workflows | Included              | Easy           |

#### **BI Tools**

| Tool     | Best For                   | Pricing    | Learning Curve |
|----------|----------------------------|------------|----------------|
| Looker   | Enterprise, semantic layer | \$\$\$\$\$ | Steep          |
| Tableau  | Visual exploration         | \$\$\$\$   | Medium         |
| Power BI | Microsoft ecosystem        | \$\$       | Medium         |
| Metabase | SMB, cost-conscious        | Free / \$  | Easy           |

Version 2.0 | January 2026 Page 22 of 34

#### **Reference Architectures**

#### **Architecture 1: Startup / SMB Stack**

Budget: \$500 - \$2,000/month
Team Size: 1-3 data people
Data Volume: < 100GB

| Layer          | Tool                            | Monthly Cost    |
|----------------|---------------------------------|-----------------|
| Ingestion      | Airbyte (self-hosted) or Stitch | \$0 - \$500     |
| Storage        | BigQuery or Snowflake           | \$200 - \$800   |
| Transformation | dbt Core                        | \$0             |
| Orchestration  | dbt Cloud or GitHub Actions     | \$0 - \$200     |
| ВІ             | Metabase or Preset              | \$0 - \$500     |
| Total          |                                 | \$200 - \$2,000 |



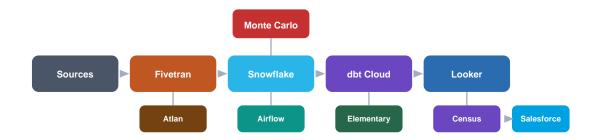
(Orchestration: GitHub Actions)

#### **Architecture 2: Mid-Market Stack**

Budget: \$5,000 - \$20,000/month
Team Size: 5-15 data people
Data Volume: 100GB - 5TB

| Layer          | Tool                | Monthly Cost       |
|----------------|---------------------|--------------------|
| Ingestion      | Fivetran            | \$2,000 - \$8,000  |
| Storage        | Snowflake           | \$1,500 - \$6,000  |
| Transformation | dbt Cloud           | \$500 - \$1,500    |
| Orchestration  | dbt Cloud + Airflow | \$500 - \$1,500    |
| Quality        | Elementary + Manual | \$0 - \$500        |
| ВІ             | Looker or Tableau   | \$1,000 - \$3,000  |
| Total          |                     | \$5,500 - \$20,500 |

Version 2.0 | January 2026 Page 23 of 34




### **Architecture 3: Enterprise Stack**

Budget: \$50,000 - \$200,000+/month

**Team Size:** 20+ data people **Data Volume:** 5TB - 1PB+

| Layer          | Tool                         | Monthly Cost         |
|----------------|------------------------------|----------------------|
| Ingestion      | Fivetran + Custom            | \$10,000 - \$50,000  |
| Storage        | Snowflake or Databricks      | \$15,000 - \$80,000  |
| Transformation | dbt Cloud Enterprise         | \$5,000 - \$15,000   |
| Orchestration  | Airflow (managed) or Dagster | \$2,000 - \$10,000   |
| Quality        | Monte Carlo                  | \$5,000 - \$20,000   |
| Catalog        | Atlan or Alation             | \$5,000 - \$20,000   |
| ВІ             | Looker or Tableau Server     | \$5,000 - \$15,000   |
| Reverse ETL    | Census or Hightouch          | \$3,000 - \$10,000   |
| Total          |                              | \$50,000 - \$220,000 |




Version 2.0 | January 2026 Page 24 of 34

# **Architecture 4: Real-Time Analytics Stack**

Budget: \$20,000 - \$100,000+/month

Use Case: Sub-second analytics, streaming

| Layer             | Tool                      | Purpose              |
|-------------------|---------------------------|----------------------|
| Streaming         | Kafka / Confluent         | Event streaming      |
| Stream Processing | Flink / Spark Streaming   | Real-time transforms |
| Real-time Storage | Apache Druid / ClickHouse | Fast queries         |
| Batch Storage     | Snowflake / Databricks    | Historical analytics |
| Serving           | Redis / DynamoDB          | Low-latency serving  |



### **Implementation Roadmap**

### **Phase 1: Foundation (Months 1-3)**

| Week  | Focus                 | Deliverables                         |
|-------|-----------------------|--------------------------------------|
| 1-2   | Assessment & Planning | Current state analysis, requirements |
| 3-4   | Platform Selection    | Vendor selection, contracts          |
| 5-6   | Core Infrastructure   | Warehouse setup, initial security    |
| 7-8   | Initial Ingestion     | 5-10 critical data sources connected |
| 9-10  | Basic Transformation  | Staging models, core dimensions      |
| 11-12 | MVP Analytics         | First dashboard, initial users       |

#### **Exit Criteria:**

- Warehouse deployed and accessible
- Critical data sources ingesting
- Basic dimensional model built
- First dashboard in production
- 5+ users trained

Version 2.0 | January 2026 Page 25 of 34

### Phase 2: Scale (Months 4-6)

| Week  | Focus             | Deliverables                          |
|-------|-------------------|---------------------------------------|
| 13-14 | Expand Ingestion  | 20+ data sources                      |
| 15-16 | Advanced Modeling | Fact tables, incremental models       |
| 17-18 | Data Quality      | Testing framework, monitoring         |
| 19-20 | Self-Service      | Governed access, training program     |
| 21-22 | Optimization      | Performance tuning, cost optimization |
| 23-24 | Documentation     | Data catalog, documentation           |

#### **Exit Criteria:**

- All critical data sources connected
- Comprehensive data model
- Quality monitoring in place
- 50% user adoption
- Cost baseline established

### Phase 3: Optimize (Months 7-12)

| Quarter | Focus              | Deliverables                        |
|---------|--------------------|-------------------------------------|
| Q3      | Advanced Analytics | ML capabilities, embedded analytics |
| Q3      | Governance         | Catalog, lineage, access controls   |
| Q4      | Automation         | CI/CD, automated quality            |
| Q4      | Advanced Use Cases | Real-time, reverse ETL              |

#### **Exit Criteria:**

- Full governance framework
- ML capabilities operational
- 80%+ user adoption
- Cost optimization achieved
- Advanced use cases enabled

Version 2.0 | January 2026 Page 26 of 34

### **Cost Optimization Strategies**

### **Warehouse Cost Optimization**

| Strategy                | Potential Savings | Implementation              |
|-------------------------|-------------------|-----------------------------|
| Right-size compute      | 20-40%            | Monitor utilization, resize |
| Auto-suspend            | 30-50%            | Configure idle timeout      |
| Clustering/partitioning | 20-30%            | Optimize for query patterns |
| Incremental processing  | 40-60%            | Replace full refreshes      |
| Archive old data        | 10-30%            | Move to cold storage        |
| Query optimization      | 20-40%            | Review expensive queries    |

### **Ingestion Cost Optimization**

| Strategy              | Potential Savings | Implementation               |
|-----------------------|-------------------|------------------------------|
| Reduce sync frequency | 30-50%            | Match to business need       |
| Exclude unused data   | 20-40%            | Filter unnecessary tables    |
| Incremental syncs     | 20-30%            | Avoid full resyncs           |
| Evaluate alternatives | 30-60%            | Compare Fivetran vs. Airbyte |

# **Total Cost of Ownership (TCO) Checklist**

| Cost Category | Components                    | Optimization Focus          |
|---------------|-------------------------------|-----------------------------|
| Compute       | Warehouse credits, processing | Right-sizing, scheduling    |
| Storage       | Raw, staging, marts           | Lifecycle, compression      |
| Ingestion     | Connector costs, MAR          | Sync frequency, coverage    |
| Tooling       | BI, catalog, quality          | Consolidation, alternatives |
| People        | Salaries, training            | Automation, self-service    |
| Support       | Vendor support, consulting    | Build capability            |

Version 2.0 | January 2026 Page 27 of 34

### **Security & Compliance**

### **Security Framework**

| Layer       | Controls                 | Implementation    |
|-------------|--------------------------|-------------------|
| Network     | VPCs, private endpoints  | Cloud networking  |
| Identity    | SSO, MFA, RBAC           | IAM integration   |
| Data        | Encryption, masking      | Platform features |
| Application | API security, audit logs | Configuration     |
| Governance  | Policies, training       | Organizational    |

# **Compliance Requirements by Regulation**

| Regulation | Key Requirements                             | Data Stack Implications           |
|------------|----------------------------------------------|-----------------------------------|
| GDPR       | Consent, right to erasure, data minimization | PII tracking, deletion capability |
| CCPA/CPRA  | Disclosure, opt-out, data portability        | Data catalog, export capability   |
| HIPAA      | PHI protection, audit trails                 | Encryption, access controls       |
| SOC 2      | Security controls, monitoring                | Vendor selection, audit support   |
| PCI DSS    | Cardholder data protection                   | Tokenization, access controls     |

### **Security Best Practices**

| Best Practice         | Implementation               | Verification          |
|-----------------------|------------------------------|-----------------------|
| Encryption at Rest    | Enable on all platforms      | Platform settings     |
| Encryption in Transit | TLS for all connections      | Network config        |
| Least Privilege       | Role-based access            | Access reviews        |
| PII Detection         | Automated scanning           | Catalog integration   |
| Audit Logging         | Enable comprehensive logging | Log review            |
| Regular Reviews       | Quarterly access reviews     | Process documentation |

Version 2.0 | January 2026 Page 28 of 34

#### **Team Structure & Skills**

#### **Modern Data Team Roles**

| Role                   | Responsibilities             | Skills                            |
|------------------------|------------------------------|-----------------------------------|
| Data Engineer          | Build and maintain pipelines | Python, SQL, orchestration, cloud |
| Analytics Engineer     | Model data for analysis      | SQL, dbt, data modeling           |
| Data Analyst           | Generate insights, reports   | SQL, BI tools, statistics         |
| Data Scientist         | Build ML models              | Python, ML, statistics            |
| Data Platform Engineer | Manage infrastructure        | Cloud, DevOps, security           |
| Data Product Manager   | Define roadmap, requirements | Product management, domain        |

# **Team Structure by Organization Size**

| Size              | Team Structure         | Key Roles                                          |
|-------------------|------------------------|----------------------------------------------------|
| Startup (1-2)     | Generalist             | Analytics Engineer(s) doing everything             |
| SMB (3-5)         | Specialists emerging   | 2 Analytics Engineers, 1 Data Engineer, 2 Analysts |
| Mid-Market (6-15) | Specialized teams      | Platform team, Analytics team, BI team             |
| Enterprise (20+)  | Centralized + Embedded | Platform team + domain-embedded analysts           |

### **Skills Development Roadmap**

| Skill Area    | Foundation              | Intermediate           | Advanced                |
|---------------|-------------------------|------------------------|-------------------------|
| SQL           | Basic queries           | Window functions, CTEs | Optimization, advanced  |
| Python        | Syntax, pandas          | Engineering patterns   | Distributed computing   |
| dbt           | Models, tests           | Macros, packages       | Custom materializations |
| Cloud         | Console basics          | IaC, services          | Architecture design     |
| Data Modeling | 3NF, dimension modeling | Advanced patterns      | Data vault, mesh        |

Version 2.0 | January 2026 Page 29 of 34

#### **Vendor Selection Framework**

# **Evaluation Criteria Template**

| Criteria       | Weight | Vendor A | Vendor B | Vendor C |
|----------------|--------|----------|----------|----------|
| Functionality  | 25%    |          |          |          |
| Ease of Use    | 15%    |          |          |          |
| Integration    | 15%    |          |          |          |
| Scalability    | 10%    |          |          |          |
| Security       | 10%    |          |          |          |
| Support        | 10%    |          |          |          |
| Cost           | 10%    |          |          |          |
| Roadmap        | 5%     |          |          |          |
| Weighted Score | 100%   |          |          |          |

#### **Vendor Evaluation Process**

| Phase           | Activities Duration                      |           |
|-----------------|------------------------------------------|-----------|
| 1. Requirements | Define needs, success criteria 1-2 weeks |           |
| 2. Long List    | Research options, initial screening      | 1 week    |
| 3. Short List   | Deep evaluation, demos                   | 2-3 weeks |
| 4. POC          | Proof of concept with top candidates     | 2-4 weeks |
| 5. Negotiation  | Contract, pricing, SLAs                  | 1-2 weeks |
| 6. Decision     | Final selection, approval                | 1 week    |

# **Key Questions for Vendors**

| Category    | Questions                                           |
|-------------|-----------------------------------------------------|
| Product     | Roadmap? Release frequency? Customer input process? |
| Support     | SLAs? Support channels? Implementation help?        |
| Security    | Certifications? Encryption? Access controls?        |
| Integration | APIs? Native connectors? Custom development?        |
| Pricing     | Model? Discounts? Growth pricing? Exit costs?       |
| References  | Similar customers? Use case references?             |

Version 2.0 | January 2026 Page 30 of 34

# **Appendix**

# A. Glossary of Terms

| Term           | Definition                                                    |
|----------------|---------------------------------------------------------------|
| CDC            | Change Data Capture - capturing database changes in real-time |
| DAG            | Directed Acyclic Graph - workflow dependency structure        |
| Data Lakehouse | Architecture combining data lake and warehouse features       |
| Data Mesh      | Decentralized data architecture with domain ownership         |
| dbt            | Data Build Tool - SQL-first transformation framework          |
| ELT            | Extract, Load, Transform - load first, transform in warehouse |
| ETL            | Extract, Transform, Load - transform before loading           |
| Feature Store  | Centralized repository for ML features                        |
| MAR            | Monthly Active Rows - common ingestion pricing metric         |
| MLOps          | Machine Learning Operations - ML lifecycle management         |
| Reverse ETL    | Syncing data from warehouse to operational systems            |
| Semantic Layer | Unified business logic and metrics definitions                |

#### **B. Tool Quick Reference**

| Category       | Top Pick (Enterprise) | Top Pick (SMB) | Top Pick (Open Source) |
|----------------|-----------------------|----------------|------------------------|
| Ingestion      | Fivetran              | Stitch         | Airbyte                |
| Warehouse      | Snowflake             | BigQuery       | ClickHouse             |
| Transformation | dbt Cloud             | dbt Cloud      | dbt Core               |
| Orchestration  | Airflow (managed)     | dbt Cloud      | Airflow                |
| Quality        | Monte Carlo           | Elementary     | Great Expectations     |
| Catalog        | Atlan                 | Atlan          | DataHub                |
| ВІ             | Looker                | Metabase       | Metabase               |
| Reverse ETL    | Census                | Hightouch      | None (build custom)    |

Version 2.0 | January 2026 Page 31 of 34

# C. Implementation Checklist

#### **Pre-Implementation**

| Item                                | Status | Notes |
|-------------------------------------|--------|-------|
| [] Business requirements documented |        |       |
| [] Data sources inventoried         |        |       |
| [] Team roles defined               |        |       |
| [] Budget approved                  |        |       |
| [] Vendor contracts signed          |        |       |
| [] Security requirements defined    |        |       |

#### Implementation

| Item                           | Status | Notes |
|--------------------------------|--------|-------|
| [ ] Cloud accounts provisioned |        |       |
| [] Warehouse deployed          |        |       |
| [] Ingestion configured        |        |       |
| [] dbt project initialized     |        |       |
| [] CI/CD pipeline setup        |        |       |
| [] BI tool deployed            |        |       |
| [] Users provisioned           |        |       |

#### **Post-Implementation**

| Item                         | Status | Notes |
|------------------------------|--------|-------|
| [] Documentation complete    |        |       |
| [] Training delivered        |        |       |
| [] Monitoring configured     |        |       |
| [] Runbooks created          |        |       |
| [] Support processes defined |        |       |

Version 2.0 | January 2026 Page 32 of 34

### **D. Version History**

| Version | Date          | Author                    | Changes                                                     |
|---------|---------------|---------------------------|-------------------------------------------------------------|
| 1.0     | January 2025  | Enterprise Data Solutions | Initial release                                             |
| 2.0     | November 2025 | Enterprise Data Solutions | 2026 Edition - Updated tool comparisons, added new sections |

### **About Enterprise Data Solutions**

Enterprise Data Solutions helps organizations transform their data capabilities from strategic planning to implementation. Our services include:

| Service            | Description                                                       |
|--------------------|-------------------------------------------------------------------|
| Data Strategy      | Develop comprehensive data strategies aligned with business goals |
| Platform Selection | Vendor evaluation and selection for your modern data stack        |
| Implementation     | End-to-end deployment of data platforms and pipelines             |
| Optimization       | Performance tuning, cost optimization, best practices             |
| Training           | Upskill your team on modern data stack technologies               |

#### **Our Modern Data Stack Services**

| Service             | What's Included                                     |
|---------------------|-----------------------------------------------------|
| Assessment          | Current state analysis, gap identification, roadmap |
| Architecture Design | Reference architecture customized for your needs    |
| Tool Selection      | RFP support, vendor evaluation, POC management      |
| Implementation      | Platform deployment, pipeline development, testing  |
| Managed Services    | Ongoing support, monitoring, optimization           |

#### **Contact Us:**

| Channel      | Details                                           |
|--------------|---------------------------------------------------|
| Website      | https://www.enterprisedatasolutions.co.nz/        |
| Email        | Contact@enterprisedatasolutions.co.nz             |
| Consultation | Visit our website to schedule a free consultation |

This guide is provided by Enterprise Data Solutions as a resource for organizations building modern data platforms. Feel free to use and customize for your organization's needs.

Version 2.0 | January 2026 Page 33 of 34

This guide is provided by Enterprise Data Solutions. Feel free to customize for your organization's needs.

Copyright 2026 Enterprise Data Solutions. All rights reserved.

Version 2.0 | January 2026 Page 34 of 34